鄭州事業(yè)單位考試行測輔導:排列組合七大解題策略(2)
4.捆綁法
所謂捆綁法,指在解決對于某幾個元素要求相鄰的問題時,先整體考慮,將相鄰元素視作一個整體參與排序,然后再單獨考慮這個整體內(nèi)部各元素間順序。注意:其首要特點是相鄰,其次捆綁法一般都應用在不同物體的排序問題中。
例:5個男生和3個女生排成一排,3個女生必須排在一起,有多少種不同排法?
A.240 B.320 C.450 D.480
正確答案【B】
解析:采用捆綁法,把3個女生視為一個元素,與5個男生進行排列,共有 A(6,6)=6x5x4x3x2種,然后3個女生內(nèi)部再進行排列,有A(3,3)=6種,兩次是分步完成的,應采用乘法,所以排法共有:A(6,6) ×A(3,3) =320(種)。
5.插空法
所謂插空法,指在解決對于某幾個元素要求不相鄰的問題時,先將其它元素排好,再將指定的不相鄰的元素插入已排好元素的間隙或兩端位置。
注意:a.首要特點是不鄰,其次是插空法一般應用在排序問題中。
b.將要求不相鄰元素插入排好元素時,要注釋是否能夠插入兩端位置。
c.對于捆綁法和插空法的區(qū)別,可簡單記為“相鄰問題捆綁法,不鄰問題插空法”。
例:若有甲、乙、丙、丁、戊五個人排隊,要求甲和乙兩個人必須不站在一起,且甲和乙不能站在兩端,則有多少排隊方法?
A.9 B.12 C.15 D.20
正確答案【B】
解析:先排好丙、丁、戊三個人,然后將甲、乙插到丙、丁、戊所形成的兩個空中,因為甲、乙不站兩端,所以只有兩個空可選,方法總數(shù)為A(3,3)×A(2,2)=12種。
6.插板法
所謂插板法,指在解決若干相同元素分組,要求每組至少一個元素時,采用將比所需分組數(shù)目少1的板插入元素之間形成分組的解題策略。
注意:其首要特點是元素相同,其次是每組至少含有一個元素,一般用于組合問題中。
例:將8個完全相同的球放到3個不同的盒子中,要求每個盒子至少放一個球,一共有多少種方法?
A.24 B.28 C.32 D.48
正確答案【B】
解析:解決這道問題只需要將8個球分成三組,然后依次將每一組分別放到一個盒子中即可。因此問題只需要把8個球分成三組即可,于是可以將8個球排成一排,然后用兩個板插到8個球所形成的空里,即可順利的把8個球分成三組。其中個板前面的球放到個盒子中,個板和第二個板之間的球放到第二個盒子中,第二個板后面的球放到第三個盒子中去。因為每個盒子至少放一個球,因此兩個板不能放在同一個空里且板不能放在兩端,于是其放板的方法數(shù)是
C(8,2)=28種。(注:板也是無區(qū)別的)
(編輯:姜芃)